Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.994
Filtrar
1.
Nat Commun ; 15(1): 1261, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341416

RESUMO

While CD4+ T cells are a prerequisite for CD8+ T cell-mediated protection against intracellular hepatotropic pathogens, the mechanisms facilitating the transfer of CD4-help to intrahepatic CD8+ T cells are unknown. Here, we developed an experimental system to investigate cognate CD4+ and CD8+ T cell responses to a model-antigen expressed de novo in hepatocytes and reveal that after initial priming, effector CD4+ and CD8+ T cells migrate into portal tracts and peri-central vein regions of the liver where they cluster with type-1 conventional dendritic cells. These dendritic cells are locally licensed by CD4+ T cells and expand the number of CD8+ T cells in situ, resulting in larger effector and memory CD8+ T cell pools. These findings reveal that CD4+ T cells promote intrahepatic immunity by amplifying the CD8+ T cell response via peripheral licensing of hepatic type-1 conventional dendritic cells and identify intrahepatic perivascular compartments specialized in facilitating effector T cell-dendritic cell interactions.


Assuntos
Linfócitos T CD4-Positivos , Fígado , Tecido Linfoide , Antígenos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Fígado/imunologia , Humanos , Tecido Linfoide/imunologia
2.
J Virol ; 97(6): e0176022, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37223960

RESUMO

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Células T Auxiliares Foliculares , Animais , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfonodos/citologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ligante de CD40/genética , Expressão Gênica/imunologia , DNA Viral/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia
3.
J Virol ; 96(17): e0080822, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000842

RESUMO

The mechanisms underlying depletion of CD4 T cells during acute HIV-1 infection are not well understood. Here we show that caspase-1-induced pyroptosis, a highly inflammatory programmed cell death pathway, is the dominant mechanism responsible for the rapid depletion of CD4 T cells in gut-associated lymphatic tissue (GALT), spleen, and lymph nodes during acute simian immunodeficiency virus (SIV) infection in rhesus macaques. Upregulation of interferon-gamma inducible factor 16, a host DNA sensor that triggers pyroptosis, was also observed in tissue-resident CD4 T cells and correlated with viral loads and CD4 T cell loss. In contrast, caspase-3-mediated apoptosis and viral cytotoxicity only accounted for a small fraction of CD4 T cell death. Other programmed cell death mechanisms, including mitochondria-induced caspase-independent cell death, necroptosis, and autophagy, did not significantly contribute to CD4 T cell depletion. These data support a model in which caspase-1-mediated pyroptosis is the principal mechanism that results in CD4 T cell loss in the GALT and lymphoid organs and release of proinflammatory cytokines. These findings contribute to our understanding of the pathogenesis of acute SIV infection and have important implications for the development of therapeutic strategies. IMPORTANCE Different mechanisms for CD4 T cell depletion during acute HIV-1 infection have been proposed. In this study, we demonstrate that in early simian immunodeficiency virus infection, depletion of CD4 T cells is primarily due to pyroptosis. Other mechanisms may also contribute in a minor way to CD4 T cell depletion.


Assuntos
Linfócitos T CD4-Positivos , Macaca mulatta , Piroptose , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Caspase 1/metabolismo , Citocinas , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade
4.
Nature ; 607(7920): 762-768, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794484

RESUMO

Gastrointestinal health depends on the adaptive immune system tolerating the foreign proteins in food1,2. This tolerance is paradoxical because the immune system normally attacks foreign substances by generating inflammation. Here we addressed this conundrum by using a sensitive cell enrichment method to show that polyclonal CD4+ T cells responded to food peptides, including a natural one from gliadin, by proliferating weakly in secondary lymphoid organs of the gut-liver axis owing to the action of regulatory T cells. A few food-specific T cells then differentiated into T follicular helper cells that promoted a weak antibody response. Most cells in the expanded population, however, lacked canonical T helper lineage markers and fell into five subsets dominated by naive-like or T follicular helper-like anergic cells with limited capacity to form inflammatory T helper 1 cells. Eventually, many of the T helper lineage-negative cells became regulatory T cells themselves through an interleukin-2-dependent mechanism. Our results indicate that exposure to food antigens causes cognate CD4+ naive T cells to form a complex set of noncanonical hyporesponsive T helper cell subsets that lack the inflammatory functions needed to cause gut pathology and yet have the potential to produce regulatory T cells that may suppress it.


Assuntos
Linfócitos T CD4-Positivos , Alimentos , Tolerância Imunológica , Alérgenos/imunologia , Formação de Anticorpos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Proteínas na Dieta/imunologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/imunologia , Gliadina/imunologia , Tolerância Imunológica/imunologia , Inflamação , Interleucina-2/imunologia , Fígado/citologia , Fígado/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Fragmentos de Peptídeos/imunologia , Células T Auxiliares Foliculares/citologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia
5.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766979

RESUMO

Rap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes Ptsn, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable, in part, to defective activation of integrins αLß2 and α4ß7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, Ptsn enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of Ptsn ameliorates T cell-mediated colitis.


Assuntos
Integrinas , Tecido Linfoide , Proteína Fosfatase 1 , Linfócitos T , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular/fisiologia , Colite/imunologia , Colite/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteína Fosfatase 1/imunologia , Proteína Fosfatase 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/imunologia , Proteínas rap1 de Ligação ao GTP/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(25): e2202327119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696583

RESUMO

Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.


Assuntos
Células Endoteliais , Doenças Pulmonares Intersticiais , Proteínas de Membrana , Linfócitos T , Doenças Vasculares , Animais , Criança , Células Endoteliais/imunologia , Células Endoteliais/efeitos da radiação , Mutação com Ganho de Função , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/imunologia , Depleção Linfocítica , Tecido Linfoide/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Tolerância a Radiação , Linfócitos T/imunologia , Doenças Vasculares/genética , Doenças Vasculares/imunologia
7.
Nature ; 607(7919): 578-584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636458

RESUMO

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia
8.
Front Immunol ; 13: 838328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251032

RESUMO

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Assuntos
Atrofia/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos B/imunologia , Humanos , Tecido Linfoide/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia
9.
Science ; 375(6581): eabf7470, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143312

RESUMO

Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.


Assuntos
Linfócitos B/imunologia , Complemento C3/metabolismo , Células Dendríticas/imunologia , Tecido Linfoide/imunologia , Trogocitose , Adulto , Animais , Apresentação de Antígeno , Linfócitos B/metabolismo , Membrana Celular/metabolismo , Ativação do Complemento , Complemento C3/imunologia , Células Dendríticas/metabolismo , Feminino , Antígenos HLA-D/imunologia , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Complemento 3d/imunologia , Receptores de Complemento 3d/metabolismo , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35072209

RESUMO

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Linfopoese/genética , Receptores de Interleucina-7/genética , Tirosina Quinase 3 Semelhante a fms/genética , Imunidade Adaptativa/genética , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/citologia , Imunidade Inata/genética , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Linfopoese/imunologia , Camundongos , Especificidade de Órgãos/genética , Linfócitos T Reguladores/imunologia
11.
J Immunol ; 208(4): 839-850, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074867

RESUMO

Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfopoese , Peroxissomos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Formação de Anticorpos/imunologia , Biomarcadores , Diferenciação Celular , Suscetibilidade a Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunofenotipagem , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Linfopoese/genética , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Receptor 1 de Sinal de Orientação para Peroxissomos/deficiência , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia
12.
Mucosal Immunol ; 15(1): 40-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465895

RESUMO

The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.


Assuntos
Células Dendríticas/imunologia , Imunomodulação/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Tecido Linfoide/imunologia , Animais , Humanos , Imunidade nas Mucosas
13.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813503

RESUMO

Tertiary lymphoid tissues (TLTs) facilitate local T and B cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here, we identified TNF superfamily CD153/CD30 signaling between 2 unique age-dependent lymphocyte subpopulations, CD153+PD-1+CD4+ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL-21 and IFN-γ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis, and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153/CD30 signaling in TLT formation and propose targeting the CD153/CD30 signaling pathway as a therapeutic target for slowing kidney disease progression.


Assuntos
Injúria Renal Aguda/imunologia , Envelhecimento/imunologia , Ligante CD30/imunologia , Antígeno Ki-1/imunologia , Tecido Linfoide/imunologia , Transdução de Sinais/imunologia , Injúria Renal Aguda/genética , Envelhecimento/genética , Animais , Ligante CD30/genética , Linfócitos T CD4-Positivos/imunologia , Antígeno Ki-1/genética , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
14.
Front Immunol ; 12: 779709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880872

RESUMO

The ocular mucosal tissues are exposed to potentially harmful foreign antigens in the air and tear fluid. The tear duct-associated lymphoid tissue (TALT) may contribute to immune surveillance in the eye region. Follicle-associated epithelium (FAE) of TALTs is classified as stratified squamous epithelium and consists of squamous epithelial cells arranged in layers on the basement membrane. In contrast, most mucosa-associated lymphoid tissue is covered by a monolayer of epithelium containing microfold (M) cells. Therefore, antigen uptake and the presence of M cells in TALT are not fully understood. The present study found that a small population of FAE cells in the TALT expressed intestinal M-cell markers, namely Sox8, Tnfaip2, GP2, and OPG. This cell population was identified as functional M cells because of their uptake capacity of luminal nanoparticles. In addition, RANKL, which is essential for M-cell differentiation, was expressed by stroma-like cells at the subepithelial region and its receptor RANK by the FAE in the TALT. The administration of RANKL markedly increased the number of Sox8+ M cells. In contrast, deficiency in OPG, an endogenous inhibitor of RANKL, increased the number of M cells in the TALT. These data demonstrate that the RANKL-RANK axis is essential for M-cell differentiation in the TALT. Furthermore, immunization via eye drops elicited the production of antigen-specific antibodies in tears, which was enhanced by RANKL administration. Thus, TALT M cells play an important role in the immunosurveillance of the eye region.


Assuntos
Células Epiteliais/imunologia , Vigilância Imunológica/imunologia , Tecido Linfoide/imunologia , Ducto Nasolacrimal/imunologia , Animais , Camundongos
15.
Bull Exp Biol Med ; 172(2): 158-163, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34855089

RESUMO

In postnatal ontogeny, the topographic relationships of the tongue glands and lymphoid structures in the thickness of the tongue have clear age-related features. In this article, we discuss the features of the glandular-lymphoid relationship in the thickness of the tongue, which is of particular scientific and practical importance for more precise understanding of the mechanisms providing local immunity in the oral cavity.


Assuntos
Tecido Linfoide/imunologia , Mucosa Bucal/imunologia , Língua/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Criança , Pré-Escolar , Feminino , Humanos , Imunidade Inata/fisiologia , Lactente , Recém-Nascido , Tecido Linfoide/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Glândulas Salivares/imunologia , Glândulas Salivares/patologia , Língua/patologia , Adulto Jovem
16.
Front Immunol ; 12: 778996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950143

RESUMO

The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRß-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Seleção Clonal Mediada por Antígeno , Perfilação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Doença Enxerto-Hospedeiro/genética , Tecido Linfoide/imunologia , Linfócitos T/imunologia , Transcriptoma , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ativação Linfocitária , Tecido Linfoide/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Linfócitos T/metabolismo , Fatores de Tempo , Transplante Homólogo , Transplante Isogênico , Irradiação Corporal Total
17.
J Nanobiotechnology ; 19(1): 389, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823541

RESUMO

With the in-depth exploration on cancer therapeutic nanovaccines, increasing evidence shows that the poor delivery of nanovaccines to lymphoid organs has become the culprit limiting the rapid induction of anti-tumor immune response. Unlike the conventional prophylactic vaccines that mainly form a depot at the injection site to gradually trigger durable immune response, the rapid proliferation of tumors requires an efficient delivery of nanovaccines to lymphoid organs for rapid induction of anti-tumor immunity. Optimization of the physicochemical properties of nanovaccine (e.g., size, shape, charge, colloidal stability and surface ligands) is an effective strategy to enhance their accumulation in lymphoid organs, and nanovaccines with dynamic structures are also designed for precise targeted delivery of lymphoid organs or their subregions. The recent progress of these nanovaccine delivery strategies is highlighted in this review, and the challenges and future direction are also discussed.


Assuntos
Vacinas Anticâncer , Imunoterapia , Tecido Linfoide , Nanomedicina , Animais , Humanos , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanoestruturas , Vacinas Sintéticas
18.
Histol Histopathol ; 36(12): 1273-1283, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698365

RESUMO

Conjunctiva-associated lymphoid tissue (CALT) plays a key role in protecting the eye surface by initiating and regulating immune responses. The aim of this study was to investigate in healthy children the proportion of intraepithelial lymphocytes (IELs), the degree of viability and/or apoptosis and cell proliferation in three different topographic areas of the conjunctiva. Superior tarsal, superior bulbar, and inferior tarsal-bulbarfornix conjunctival cells were collected by brush cytology (BC) from 24 healthy paediatric subjects (13 boys and 11 girls, mean age 6±2 years) who were to undergo strabismus correction surgery under general anaesthesia. Subsequently, these cells were analysed phenotypically and functionally by flow cytometry (FC). Flow cytometry analysis showed that not all the cells obtained by BC were of the epithelial lineage, but that there was a population of CD45+ cells (IELs) regularly present in the conjunctiva of healthy children. These IELs were mostly T-lymphocytes (CD3+) and B-lymphocytes (CD19+), with higher levels of T-lymphocytes (CD3+) in the upper areas than in the inferior tarsal-bulbar-fornix, where the highest levels of B-lymphocytes (CD19+) were found. In the apoptosis assay, two groups of cell populations were differentiated by cell size and complexity (cytoplasmic granularity), with more complex cells predominating in the upper areas of the conjunctiva and less complex cells being more abundant in the inferior tarsal-bulbar-fornix. Finally, the proliferative capacity of the conjunctival epithelium was significantly higher in the upper tarsal zone than in the rest of the zones analysed. These results suggest that the epithelial component and the IELs of CALT are also regularly present in the conjunctiva of the healthy child, varying in phenotype, viability and cell proliferation according to the different conjunctival regions analysed, which could lead us to believe that each conjunctival zone plays a different, specific role in the regulation of the immune response at the ocular level.


Assuntos
Linfócitos B , Túnica Conjuntiva/imunologia , Voluntários Saudáveis , Linfócitos Intraepiteliais/imunologia , Tecido Linfoide/imunologia , Apoptose , Proliferação de Células , Criança , Feminino , Citometria de Fluxo , Humanos , Masculino , Linfócitos T
19.
J Virol ; 95(24): e0082921, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613801

RESUMO

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expressions of pattern recognition receptors (PRRs) also cause diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not yet been revealed. Based on TLR4-deficient (TLR4-/-) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type 2 dendritic cells (CD8α- CD11b+ cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of follicular helper T (Tfh) cells promotes the proliferation of germinal center (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4-deficient (TLR4-/-) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG compared to that occurred in wild-type (WT) mice. As a consequence, TLR4-/- mice exhibited higher mortality than that of WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α+ CD11b-), a subset of cDCs known to induce CD4+ T-cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


Assuntos
Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Humoral/imunologia , Tecido Linfoide/imunologia , Vírus da Raiva/imunologia , Receptor 4 Toll-Like/genética , Animais , Anticorpos Antivirais/sangue , Feminino , Imunização , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Receptor 4 Toll-Like/imunologia
20.
Front Immunol ; 12: 718499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566974

RESUMO

Mast cells are well known to be activated via cross-linking of immunoglobulins bound to surface receptors. They are also recognized as key initiators and regulators of both innate and adaptive immune responses against pathogens, especially in the skin and mucosal surfaces. Substantial attention has been given to the role of mast cells in regulating T cell function either directly or indirectly through actions on dendritic cells. In contrast, the ability of mast cells to modify B cell responses has been less explored. Several lines of evidence suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-localise with B cells in many tissue settings and produce substantial amounts of cytokines, such as IL-6, with profound impacts on B cell development, class-switch recombination events, and subsequent antibody production. Mast cells have also been suggested to modulate the development and functions of regulatory B cells. In this review, we discuss the critical impacts of mast cells on B cells using information from both clinical and laboratory studies and consider the implications of these findings on the host response to infections.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação , Mastócitos/imunologia , Mastócitos/metabolismo , Imunidade Adaptativa , Animais , Biomarcadores , Movimento Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...